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Abstract

Excessive alcohol ingestion is damaging and gives rise to a number of pathologies that influence nutritional status. Most organs of the
body are affected such as the liver and gastrointestinal tract. However, skeletal muscle appears to be particularly susceptible, giving rise to
the disease entityalcoholic myopathy. Alcoholic myopathy is far more common than overt liver disease such as cirrhosis or gastrointestinal
tract pathologies.

Alcoholic myopathy is characterised by selective atrophy of Type II (anaerobic, white glycolytic) muscle fibres: Type I (aerobic, red
oxidative) muscle fibres are relatively protected. Affected patients have marked reductions in muscle mass and impaired muscle strength
with subjective symptoms of cramps, myalgia and difficulty in gait. This affects 40–60% of chronic alcoholics (in contrast to cirrhosis,
which only affects 15–20% of chronic alcohol misuers).

Many, if not all, of these features of alcoholic myopathy can be reproduced in experimental animals, which are used to elucidate the
pathological mechanisms responsible for the disease. However, membrane changes within these muscles are difficult to discern even under
the normal light and electron microscope. Instead attention has focused on biochemical and other functional studies.

In this review, we provide evidence from these models to show that alcohol-induced defects in the membrane occur, including the
formation of acetaldehyde protein adducts and increases in sarcoplasmic-endoplasmic reticulum Ca2�-ATPase (protein and enzyme
activity). Concomitant increases in cholesterol hydroperoxides and oxysterol also arise, possibly reflecting free radical-mediated damage to
the membrane. Overall, changes within muscle membranes may reflect, contribute to, or initiate the disturbances in muscle function or
reductions in muscle mass seen in alcoholic myopathy. Present evidence suggest that the changes in alcoholic muscle disease are not due
to dietary deficiencies but rather the direct effect of ethanol or its ensuing metabolites. © 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In the following review we first describe some of the
pathological aspects of alcohol misuse and then go on to
discuss how this may affect the tissue membrane of skeletal
muscle. We draw largely upon animal studies since this
form of modelling allows the experimenter to account for
nutritional influences on alcohol-induced pathologies. How-
ever, it is important to point out that the pathology we
describe is expressed differently in the various muscle fibre

types. Nevertheless, in this review we present data derived
mainly from the analysis of Type II (anaerobic, white gly-
colytic) fibre-predominant plantaris and gastrocnemius
muscles. Where relevant, the response of the Type I (aero-
bic, red oxidative) fibre-predominant muscles represented
by the soleus are mentioned. The governing factors that
determine differential fibre sensitivity are however beyond
the scope of this review: instead the reader is directed to
more detailed articles (see [1–4]).

It is also important to point out that other studies have
suggested that alcohol impairs skeletal muscle and its asso-
ciated membrane. This includes increased activity of Na�-
K�-ATPase (which may possibly occur via upregulation of
[3H]-ouabain binding sites), impairment of calcium trans-
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port and storage (i.e., ascribed as being “ leakier and less
ordered” ) and dilatation of the sarcoplasmic reticulum
[5–9]. However, we believe that the laboratory animal stud-
ies originating from our group represents the most compre-
hensive series of investigations into alcoholic myopathy
which has employed a wide range of analytical methods,
ranging from gene expression to immuno-histochemistry.
These studies are described below.

2. Effects of alcohol on the body

By virtue of its extreme reactivity, alcohol has the po-
tential to affect virtually every organ or biochemical path-
way in the mammalian body including the liver, heart,
reproductive organs, central nervous system, gastrointesti-
nal tract, bone and skin to name but a few examples [10–
14]. The prevalence of some forms of cancer may also be
caused or exacerbated by chronic alcohol ingestion [15].
These adverse changes arise because of the extreme bio-
chemical or chemical reactivity of ethanol itself or its reac-
tive metabolite, acetaldehyde. Alternatively, damage to
cells or organs may arise as a result of the ensuing second-
ary changes within the whole body, such as free radical
generation [16,17] or endocrine disruption [18]. To this list,
we must also add membrane changes and to a certain extent
these have been reviewed previously though not with re-
spect to skeletal muscle [19–23]. Paradoxically, most atten-
tion in the area of alcohol-related membrane pathology
seems to revolve around the liver, though cirrhosis is less
common than alcoholic myopathy [24]. This supposition is
supported by a landmark study investigating the compara-
tive prevalence of various pathologies in 250 chronic alco-
holics: cirrhosis was diagnosed in only 20 subjects contrast-
ing with the diagnosis of alcoholic skeletal myopathy in 117
subjects [25]. Peripheral neuropathy was observed in 41
cases and cardiomyopathy in 20 [25]. In other words, the
emphasis on the liver as a target organ of ethanol toxicity is
misplaced. On the other hand there is some evidence to
suggest that in moderate amounts, alcohol imparts a cardio-
protective effect [26,27] although this has been challenged
[28]. In the following section we describe the deleterious
effects of alcohol that arises as a consequence of chronic
and sustained alcohol misuse and focus skeletal muscle.

3. Nutritional implications of excessive alcohol abuse
and disease

Consideration needs to be given to the fact that alcohol
misuse has profound implications for impaired or compro-
mised nutritional status. This may arise via a number of
processes. Firstly, organs such as the liver, which are di-
rectly involved in secondary processing or storage of nutri-
tional components or metabolites, may be damaged [29].
For example, the liver is a major site of metabolism for the

calciferols. Cholecalciferol is converted to 25-hydroxy-
cholecaliferol in the liver and osteoporosis is a common
feature in alcoholics. Impaired vitamin D status may con-
tribute to the osteoporosis in alcoholics, and this is respon-
sive to supplementation [30]. Secondly, there may be re-
duced dietary intakes in alcoholics in general. Such a
statement needs to be treated with caution. Although as a
rule of thumb, 50% of alcoholics will have deficiencies in
one or more macro- or micronutrients, some sub-popula-
tions (middle and upper class versus lower and working
class; European regions with diets high in anti-oxidants
versus those with lower dietary antioxidants) may have
adequate nutrition. Financial displacement of nutrient-rich
food items for alcoholic-beverages may also contribute to
malnutrition in alcohol-misuse. Finally, there may be mal-
absorption and/or maldigestion. Virtually every single re-
gion of the gastrointestinal tract is affected in alcoholism
(though not in every individual) [31]. (For selective reviews
on alcohol and nutrition see [32–38].

4. Effects of alcohol on skeletal muscle

Excessive and prolonged alcohol intake causes a defined
myopathic lesion characterised by selective atrophy of Type
II (i.e., white or anaerobic, glycolytic fast twitch) fibres
[24]. The Type I (i.e., red or aerobic, oxidative slow twitch)
fibres are relatively protected unless there is severe alcohol
exposure in which case Type I fibres may also atrophy. In
the initial stages of the disease there is some evidence of a
Type I fibre hypertrophy, though the significance of this is
unclear [24]. These changes are accompanied by reductions
in muscle mass (by an average of 22%) and body mass
index (15%) [39]. Functional impairments include cramps
with frequent falls and myalgic symptoms [24]. Muscle
strength is also impaired by alcohol which is related to
life-time cumulative intake [40–42].

Alcoholic cirrhosis per se reduces muscle strength
[43,44]. However, alcoholic myopathy is not related to
overt liver disease [24,41]. Indeed, the notion that alcoholic
myopathy may be mediated directly by excessive alcohol
ingestion has been addressed by a number of studies and
there is convincing evidence to show it occurs indepen-
dently of either neuropathy [45], malnutrition [39] or endo-
crine abnormalities such as glucocorticoid excess [46]. Nev-
ertheless, a modulating, rather than a causative role for
some of these factors have been described (for example, for
nutritional influences, see [25,47]).

Concomitant changes within the muscle include a reduc-
tion in muscle protein content [48,49] which implicates
defects in protein metabolism. This is supported by the
observation that muscle protein synthesis is reduced in al-
coholic patients with myopathy [50] and protein degrada-
tion may be either unchanged or reduced [51]. Similar
results have been obtained in animal models of alcoholic
myopathy (reviewed in [1–4]).
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5. Animal model of alcoholic myopathy

We have comprehensively investigated the pathogenic
processes involved in alcoholic myopathy with suitable an-
imal models. To investigate the putative responses of the
Type I fibres, the soleus has been examined whereas the
plantaris and gastrocnemius are taken to represent the Type
II fibres [52,53].

In acute studies, rats are treated with a bolus of ethanol
at a standard dose of 75 mmol/kg body weight, intraperito-
neally. This ensures a rapid and sustained circulating level
of ethanol. Thus, plasma levels of ethanol are approximately
450, 375, 290 185 and 0 mg/100 ml, at 0.33, 1, 2.5, 6 and
24 hours respectively [54]. In our studies, animals are sac-
rificed at various time internals up to 24 hours, though most
studies entail a 2.5 hour dosing period [55]. Reductions in
protein muscle protein synthesis occur after 1 hour and the
effects persist for 24 hours when there is no measurable
blood alcohol [54]. Reductions in total RNA (i.e., largely
ribosomal) and muscle protein contents are observed only
after 24 hours [54]. Molecular changes within muscle ex-
posed acutely to alcohol include increased in the mRNA
levels encoding c-myc [56]. Skeletal muscle protease activ-
ity also decreases acutely [54]. Other changes have been
reviewed previously [1–4]). The intraperitoneal route is
used in acute dosing studies as this ensures complete bio-
availability of the test substance [55]. For example, giving
rats the same dose of ethanol by gavage (75 mmol/kg body
weight) produces significantly lower levels of blood alcohol
at 2.5 hour probably because of first-pass metabolism [57].
However, even with this acute dosing by gavage, a signif-
icant reduction in skeletal muscle protein synthesis still
occurs, though the magnitude of the decrease is less than the
effect seen in rats treated identically by the intraperitoneal
route (Marway, Preedy and Peters, unpublished).

In chronic studies, a different protocol is used to over-
come the fact that in a free-choice system, experimental
animals have an aversion for alcohol [58,59]. To resolve
this rats are fed a nutritionally complete liquid diet, con-
taining ethanol as 35% of total dietary energy [55,58,59].
Controls are fed identical volumes of the same diet in which
ethanol is replaced by isocaloric glucose [55,58,59]. Thus,
the ensuing effects can be ascribed to ethanol per se rather
than nutritional limitations. However, this does not over-
come the possibility that alcohol may impair either the
absorption or metabolism of nutrients. In this model, mean
plasma levels of ethanol are approx. 292–377 mg/100 ml,
between 1 and 6 weeks [60]. There is a myopathic lesion, as
defined by decreases in muscle fibre diameter and reduced
protein contents as early as two weeks, particularly in the
Type II fibre plantaris [61]. Myofibrillary proteins in general
and myosin contents are reduced (Fig. 1) [62]. This may
contribute to the muscle weakness seen in rats muscle ex-
posed to alcohol [63] which is similar to the impaired
muscle strength of alcoholic patients [40,41]. Concomitant
metabolic changes within rat muscle exposed chronically to

alcohol include increased RNase activities, reduced protein
synthesis and loss of ribosomal RNA (reviewed in [1–4]).
There appears to be some tolerance, as some variables seen
in acute ethanol dosed rats (such as increased c-myc
mRNA) do not appear to occur in chronic ethanol dosed rats
[64].

However, pathological changes within these muscles are
difficult to discern even under the normal light and electron
microscope [65]. For example, in skeletal muscle of rats fed
alcohol for 6 weeks, necrotic fibres undergoing phagocyto-
sis occur only infrequently and there are no observable
differences in subcellular organelle structure under the elec-
tron microscope [65]. Instead, attention has focused on
biochemical and other functional studies. Below we de-
scribe possible membrane changes as determined by anal-
ysis of adducts, calcium regulatory protein and cholesterol
hydroperoxides and oxysterols.

6. Protein-adduct formation

Protein adducts are formed when there is covalent link-
age of a peptide with another reactive compound such as
acetaldehyde, malondialdehyde or free radicals such as the
hydroxyethyl radical [66]. They are extensively formed in
the liver [66–68]. Hybrid adducts may also be formed, such
as the malondialdehyde-acetaldehyde-protein adduct [66].
The importance of adduct formation pertains to the possi-

Fig. 1. Myofibrillary and myosin heavy chain protein in rats fed ethanol for
6 weeks. Total myofibrillary protein contents in plantaris muscle from
6-week glucose- and ethanol-fed male Wistar rats (n � 5-6), pair-fed
equivalent amounts of iso-caloric, iso-volumetric, liquid diet. Data are
means � SEM. P values are displayed over the relevant histograms.
Adapted from data contained in [62].
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bility that adducts will (I) render the target protein inoper-
ative by virtue of its conformational change or inactivation
of functional sites; (II) initiate an immunogenic reaction or
(III) be subjected to altered protein degradation by virtue of
abnormal mass, charge or structure [69]. Previous in vitro
work showed that rabbit skeletal muscle actin (particular
G-actin compared to F-actin) forms stable covalent adducts
with acetaldehyde in both reducing and non-reducing con-
ditions, possibly by reaction with lysyl residues [70]. Before
our involvement in this area, there were no reports of such
adducts being formed in skeletal muscle using well vali-
dated methods of alcohol dosing in vivo. However, when we
fed rats alcohol for 6 weeks using a pair-feeding protocol to

produce a defined myopathy, we showed increased amounts
of unreduced acetaldehyde-protein adducts in plantaris mus-
cle using both ELISA and immuno-histochemical staining
techniques [71]. However, we could not detect reduced-
acetaldehyde, malondialdehyde, malondialdehyde-acetalde-
hyde and alpha-hydroxyethyl protein-adducts in muscle
from rats fed ethanol for 6 weeks, though all these adduct
species increased in liver [71]. The histochemical analysis
showed unreduced-acetaldehyde protein adducts were lo-
cated within the sarcolemmal (i.e., muscle membrane) and
sub-sarcolemmal regions though adduct were also located in
the intermyofibrillary region [71]. We do not know the
nature of these adducts, nor the mechanism of their forma-

Fig. 2. Skeletal muscle proteins involved in the excitation-contraction-relaxation cycle. Various proteins are involved in the excitation-contraction-relaxation
cycle of skeletal muscle, anyone of which has the potential to be targeted in alcoholic myopathy. Proteins in colour were analysed using immunoblotting
techniques. (Adapted from [74] and with permission pending).
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tion. Nevertheless, it is worth noting that cytochrome P450
is located in the sarcoplasmic reticulum of skeletal muscle
[72]. One can speculate acetaldehyde binds to proteins
within its immediate site of production. Alternatively, cir-
culating acetaldehyde in the blood may bind with the first
proteins it comes into contact with producing a gradient
effects across the sarcolemmal-myofibrillary interface.

Regardless of the explanation, it is important to note that
the sarcolemmal and sub-sarcolemmal regions are particu-
larly principal sites of intracellular signalling and receptor-
post-receptor cascades [22]. Thus, adducted proteins within
these regions have the potential to alter biochemical or
mechanical performance of skeletal muscle. It is possible
that the receptors themselves will be targeted by adduct
formation. We recently tested this assumption by examining
regulatory and receptor proteins involved in calcium ho-
meostasis [73].

7. Calcium regulatory proteins

The coupling of excitation-contraction and relaxation in
skeletal muscle is regulated by cystosolic Ca2�-levels (re-
viewed in [74]). There are numerous regulatory and struc-
tural proteins involved in this process, and defects in one or
more of these may contribute towards the features of alco-
holic myopathy. To test this we analysed muscle from rats
fed alcohol for 6 weeks and quantified by immunoblotting
and enhanced chemiluminescence the alpha1 and alpha2
dihydropyridine receptors, calsequestrin, sarcalumenin, and
the 90kDa junctional face protein (Fig. 2; proteins analysed
are depicted in different colours) [73,74]. However, the
relative abundance of these microsomal proteins was rela-
tively maintained [73]. In contrast, there were significant
increases in the relative amounts of sarcoplasmic-endoplas-
mic reticulum Ca2�-ATPase protein and Ca2�-ATPase ac-
tivity [73]. The upregulation of SERCA1 protein and Ca2�-
ATPase activity may be an adaptive mechanism in alcohol-
induced muscle disease. It substantiates the aforementioned
work on protein-adducts suggesting the sarcolemmal and/or
sub-sarcolemmal regions are targeted by alcohol.

Fig. 3. Schematic representation of pathways for cholesterol hydroperoxide
and oxysterol production. Schematic pathway of hydroperoxide and oxys-
terol production from cholesterol: 7alpha-OOH, 7alpha-hydroperoxycho-
lesterol; 7beta-OOH, 7beta-hydroperoxycholesterol; 7-keto, 7-ketocholes-
terol; 5alpha-OOH, 5alpha-hydroperoxycholest-6-en-3beta-ol; 7alpha-OH,
7alpha-hydroxycholesterol; 7beta-OH, 7beta-hydroxycholesterol.

Fig. 4. Cholesterol hydroperoxides in skeletal muscle of rats treated acutely
with ethanol (24 hour after administration). Rats were treated with an acute
dose of ethanol (75 mmol/kg body weight) and killed 24 hours later.
Controls were given an equivalent volume of saline. Cholesterol hydroper-
oxides were measured in plantaris muscle 7alpha-OOH, 7alpha-hydroper-
oxycholesterol; 7beta-OOH, 7beta-hydroperoxycholesterol. Data are mean
� SEM. From [80].

620 J. Adachi et al. / Journal of Nutritional Biochemistry 14 (2003) 616–625



8. Oxidative stress, and cholesterol hydroperoxides and
oxysterols

Alcohol increases oxidative stress in a variety of tissues
exposed to ethanol such as the liver [75], CNS [76] and
heart [77] though hitherto the response of skeletal muscle
has been elusive. Carbonyl concentration is a marker of
oxidative stress albeit reflecting a non-enzymatic modifica-
tion to proteins rather than lipids [78,79]. However, protein
carbonyl does not alter in muscles of either acutely or
chronically ethanol dosed rats and there is even some evi-
dence that a small reduction occurs [80,81]. We have, nev-
ertheless, identified and confirmed the presence of two cho-
lesterol-derived hydroperoxides, 7�-hydroperoxycholest-5-
en-3�-ol (7�-OOH) and 7�-hydroperoxycholest-5-en-3�-ol
(7�-OOH) in skeletal muscle (Fig. 3) [82]. These com-
pounds arise directly because of reactive oxygen species per
se rather than other routes of metabolism [83]. Muscle
concentrations of 7�- and 7�-OOH are elevated equally in
soleus and plantaris muscle 24 hours after acutely dosing
rats with ethanol (Fig. 4) [80]. Studies at earlier time points,
i.e., 2.5 hours, demonstrate significant increases in 7�-OOH
and 7�-OOH in plantaris, but the soleus is less sensitive

confirming a Type II fibre specificity [84]. Chronic ethanol
feeding for 6 weeks also increases 7�-OOH and 7�-OOH in
both plantaris (Fig. 5) and soleus muscle (data for soleus not
shown) [82].

The oxysterols 7�- and 7�-hydroxycholesterol (7�-OH
and 7�-OH), and 3�-hydroxycholest-5-en-7-one (also
termed 7-ketocholesterol; 7-keto) have also been measured
in rats fed ethanol for 6 weeks [82]. Previously, 7-keto,
7�-OH and 7�-OH have been identified in pig and mouse
skeletal muscle [85] but not in rat muscle especially with a
myopathic lesion. In response to chronic alcohol feeding,
increases in the oxysterols 7�-OH, 7�-OH and 7-keto occur
in soleus muscle whereas significant increases in the plan-
taris only relate to 7�-OH [82] (Fig. 6). There are no studies
at present on the acute effects of alcohol on the 7�-OH,
7�-OH and 7-keto oxysterols in muscle.

The importance of these results from the analysis of
hydroperoxides and oxysterol is three fold. Firstly, oxys-
terols may have putative cytotoxic effects [86–88]. For
example, both 7�-OH and 7-keto impair cell adhesion and
increase cell permeability [89]. Oxysterols also increase
apoptosis in rat and human smooth muscle cells [89,90]. It
is unclear at present however, how this cytotoxicity relates
to the myopathic lesions seem in alcoholism or whether the

Fig. 5. Cholesterol hydroperoxides in skeletal muscle of rats treated chron-
ically with ethanol (6 weeks continuous administration). Rats were treated
with ethanol (35% of total dietary energy) and killed 6 weeks later.
Controls were fed isocaloric glucose. Cholesterol hydroperoxides were
measured in plantaris muscle 7alpha-OOH, 7alpha-hydroperoxycholes-
terol; 7beta-OOH, 7beta-hydroperoxycholesterol. Data are mean � SEM.
From [82].

Fig. 6. Cholesterol oxysterols in skeletal muscle of rats treated chronically
with ethanol (6 weeks continuous administration). Rats were treated as
described in the legend to Fig. 5. Oxysterols were measured in plantaris
muscle 7-keto, 7-ketocholesterol; 7alpha-OH, 7alpha-hydroxycholesterol;
7beta-OH, 7beta-hydroxycholesterol. Data are mean � SEM. From [82].
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increased oxysterols occurs bound (i.e., conjugated) or mo-
bile within the membrane domain. Secondly, oxysterols are
indicative of lipid peroxidation: for example their levels can
be reduced with vitamin E in smooth muscle cells in vitro
[91]. Finally, most of the cholesterol in skeletal muscle is
associated with the membrane fraction and thus increased
hydroperoxides and oxysterol represent disruption of this
subcellular region [92–94].

The fatty acid composition of muscle phospholipids is al-
tered in response to ethanol, including an increase in 18:2 and
a decrease in the relative non-essential/essential fatty acid ratio

[80]. This also has implications for membranes fluidity which
is determined by fatty acid composition [95–98]. Overall, these
changes suggest significant perturbations in the membrane
lipid domain of skeletal muscle in response to ethanol.

9. Concluding comments

Alcohol is an important constituent in most diets of the
Western and developed world. However, excessive expo-
sure to alcohol induces defects in muscle including the

Fig. 7. Schematic summary of changes in alcohol expose muscle. Summary figure of the changes in muscle. Location of oxysterols and cholesterol
hydroperoxides are putative and will occur as a result of oxidative stress.
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formation of aldehyde protein adducts, loss of ribosomes,
reduced proteins synthesis, loss of myofibrillary proteins,
and increases in sarcoplasmic-endoplasmic reticulum Ca2�-
ATPase (Fig. 7). Concomitant increases in cholesterol hy-
droperoxides and oxysterol also occur reflecting a variety of
pathogenic processes putatively within the membrane do-
main. Ultimately, excessive alcohol ingestion leads to the
disease entity alcoholic myopathy. However, it is uncertain
whether these muscle changes may reflect, contribute to, or
initiate, the disturbances in muscle function or reductions in
muscle mass in this disease.

Alcoholic subjects with myopathy may lose up to 30% of
their entire musculature [39]. This should be considered in
the context that skeletal muscle contributes to 40% of body
weight and approximately one-fifth to one quarter of whole-
body protein turnover. For example, whole-body nitrogen
excretion is enhanced in alcohol-consuming subjects [99-
101]. Thus, the associated chronic alcoholic myopathy has
profound implications for the physiology of the whole body
and protein kinetics [50].
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